
[Madhusudhanan, 4(3): March, 2015] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [630]

IJESRT
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH

TECHNOLOGY

WEB SECURITY VULNERABILITY ASSESSMENT AND RECOVERY

MACHANISAM
M.Madhusudhanan*, M.Saravanan, D.Durai kumar

* M.Tech-Information Technology, GanadipathyTulsi’s Jain Engineering College, Vellore, Tamilnadu,

India.

Associate Professor, Dept. of Information Technology, GanadipathyTulsi’s Jain Engineering College,

Vellore, Tamilnadu, India.

Associate Professor, Dept. of Information Technology, GanadipathyTulsi’s Jain Engineering College,

Vellore, Tamilnadu, India.

ABSTRACT
Nowadays web applications have critical logical holes (bug) affecting its security, Thus it makes application as

vulnerable and easy to attack by hackers and organized crime. In order to prevent these security problems from

occurrence of its maximum importance to understand the typical software faults. This paper contributes the knowledge

of widely spread two critical web applications by presenting a field study on most of vulnerabilities like SQL Injection

and XSS. By analyzing the security patches of source code which are widely used in web applications written in weak

and strong typed languages. In order to understand the way in which these vulnerabilities are really exploited by

hackers, and also provides an analysis of the source code of the scripts used to attack them. With the outcomes of this

result and its study can be used to train code inspectors and software developers in the detection of such software

faults, and also with that outcomes research for realistic vulnerability and attackers can be used to assess security

mechanisms, like vulnerability scanners, intrusion detection systems, and static code analyzers. By using various

number of software testing techniques tools various level of vulnerability are identified and recovery mechanisms

were suggested.

KEYWORDS: Internet Applications, Security, Languages, Review and evaluation.

INTRODUCTION
In computer security, vulnerability is a weakness

which allows an attacker to reduce a system's

information security assurance. The Web Application

Vulnerability Assessment is a method to test that

assesses the security of interactive applications using

web technologies such as e-banking, news and e-

commerce web applications. There are number of

reasons for the organizations to conduct a vulnerability

assessment. It simply conducts a check-up regarding

overall web security risk. If organization has number

of servers and more than a standalone handful of

applications and the vulnerability assessment of such

a large scope could be enormous. The major thing

needs to discusses is what applications need to be

assessed and for what.

The scope could be the web security of a single and

ready-to-be deployable application. With the

identified vulnerability the recovery measures are

analyzed with higher level of risk evolution procedure.

FAULT DETECTION

Error detection mechanisms form the basis of an error

resilient system as any fault during operation needs to

be detected first before the system can take a corrective

action to tolerate it. The scanner tool relies on

analyzing the source code of the application depends

on ASP.NET files and the code behind files such asC

sharp C# and Visual Basic VB for the detection of

security vulnerabilities and leaks. Therefore, the

scanner tool tries to detect the vulnerabilities that can

help hackers from the reflected output or messages, it

check most of the ASP.NET server controls and the

commands in the code behind that interact with the

database.

FAULT RECOVERY

http://www.ijesrt.com/

[Sharma, 4(1): January, 2015] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [631]

Fault recovery is a Mechanism and technique

employed to reestablish the desired level of operation

of a component. After scanning process, it will

generate a report list all the discovered leaks and

vulnerabilities by displaying the name of the infected

file with the description and its location. The

suggested recovery mechanism will help organization

to fix the vulnerabilities and improve the overall

security. With this report the organization need to take

the necessary corrections steps in order to increase the

overall security.

RELATED WORK
Security vulnerability is an attack against a system,

including things like incorrectly configured systems,

malware, passwords written on sticky pads, and so on.

Thus it makes the system more vulnerable by

increasing the security. However, this is a broader

connotation somewhat generally used within the

security community. Vulnerability gives the main

definitions relating to dependability, availability, a

generic concept including a special case of such

attributes as reliability, maintainability, safety,

Security brings in concerns for confidentiality,

integrity, in addition to availability and integrity. Basic

definitions of security are given first. They are

discussed upon, and then added by additional

definitions, which address the threats to security and

its dependability (failures, faults, errors,), their

attributes, and the means for their achievement like

fault forecasting, fault prevention, fault tolerance and

fault removal, [1]. Reference also found that a novel

algorithmic improvement with GenProg allows

scaling to large programs and finding repairsupto68%.

By using GenProg will generate a large effective

benchmark that set to use for systematic evaluations,

and inherent parallelism using cloud computing

resources to provide grounded, human competitive

cost measurements, and.[2]With the reference of

Precise Alias Analysis the problem of vulnerable web

applications by means of static source code analysis

with its address. With this precise alias analysis

targeted at the unique reference semantics commonly

found in scripting languages. Moreover, it enhances

the quality and quantity of the generated vulnerability

reports by employing a novel method [3].

Various references provided the automatic programing

repair is the initial step toward the automatic detection

of application oriented logical vulnerabilities. In this

they first use dynamic analysis with that they observe

the normal behavior of a web application to infer a

simple set of behavioral specifications. Then, it

provides the knowledge about the typical execution

procedure of web applications, And filter the learned

specifications to reduce false positives, by using the

model checking over symbolic input for the

identification if program paths that are likely to

violate the specifications under specific conditions, it

indicate the presence of logical fault in certain type of

web application [4].

EFFECT OF PROGRAMMING LANGUAGES

WITH ITS VULNERABILITY

In Web Application Security the most top Project

Report listed of the ten critical web application

security risks, having SQLi at the top, and XSS in

second [].reference also found that XSS and SQLi as

the most wide extent or occurrence; vulnerabilities [].

Figure 1 depicts the yearly percentage of disclosed

XSS and SQLi among all the causes of web

application vulnerabilities showing that they are

increasing over time [Neuhaus10]. SQLi attacks had

higher advantage of invalidated input fields in the web

application interface to characterize the SQL query

sent to the back-end database. By exploiting XSS

vulnerability, the attacker is used to send or inject the

unintended client-side script code web pages, usually

HTML and Javascript.SQLi and XSS allow attackers

to access unauthorized data like read, insert, change or

delete, gain access to privileged database accounts,

impersonate other the administrator, mimic web

applications, view and manipulate remote files on the

server, inject and execute server side programs that

allow the creation of botnets (collection of Internet-

connected).

Figure:

http://www.ijesrt.com/

[Sharma, 4(1): January, 2015] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [632]

Reports of SQLi and XSS causes of vulnerabilities

Programs communicating with other similar programs

in order to perform tasks controlled by the attacker.

The most common vulnerabilities, including XSS and

SQLi, the reasons of their existence, attacks, best

practices to avoid, detect and make them less severe

can be found in many referenced works, [1].Most of

the programming languages are currently used to

develop web applications. Ranging from languages

like C#, VB. To open source languages (PHP, CGI,

Perl, Java), Programming languages can be classified

using taxonomies, like the programming paradigm, the

type system, the execution mode. The type system,

mainly focus on the context of the present application,

specifies how data structures and its data types are

managed with the constructed language, in particular

how the language maps values and expressions into

types, how it manipulates these types, and how these

types correlate. Regarding the type system they can

weak vs strong typed static vs dynamic typed [2]. In

particular strong typed languages is one in which each

type of data (such as integer, character, hexadecimal,

packed decimal, and so forth) is predefined as part of

the programming language and all constants or

variables defined for a given program must be

described with one of the data types (e.g., a string

cannot be treated as a number), as in weak typed

languages. One of the contributions of this work is to

help understanding the impact of the type system in

the security of web applications. This is of particular

significance, as critical security vulnerabilities like

XSS and SQLi are strongly related to the way the

language manages data types [4]. For example, it is

common to find attacks that inject SQL code by taking

advantage of variables that supposedly should not be

strings (e.g., numbers, dates) as the type of the variable

is determined based on the assigned value. On the

other hand, in strong typed languages this is not

possible because the type of variables is determined

before run time and the attempt to store a string in a

variable of another type raises an error. However, this

does not prevent the occurrence of vulnerabilities in

strong typed languages, but only by taking advantage

of string variables. In fact, although Java is

intrinsically a safe programming language [2] and it is

a strong typed language, vulnerabilities can be found

in Java programs due to implementation faults [3].

VULNERABILITY CLASSIFICATION AND

ASSESSMENT APPROACH
CLASSIFICATION OF SOFTWARE FAULTS -

SECURITY VULNERABILITIES

SQL Injection
SQL Injection is a form of attack that can occur when

an application uses user input that has not been

checked to see that it is valid and the hacker uses this

malicious input to exploit sensitive information from

the database.

For example, the user can enter the following

malicious input:' OR 1=1 --

This would turn the database query into:

SELECT au_lname, au_fname FROM

authors WHERE au_id = '' OR 1=1 --

Since 1=1 always evaluates to true, this query

will always return more than 0 rows.

Cross Site Scripting
Cross Site Scripting occurs mainly in dynamic web

pages that are mixing of browser data (HTML) with

the code (<script> tag) which is embedded in the data.

The script can be (JavaScript, VBScript, ActiveX,

HTML, or Flash).The main objective of 'XSS' is to

manipulate client-side scripts of a web application to

execute in the manner desired by the malicious user.

There are two main types of Cross Site

Scripting:

 Stored Cross Site Scripting

 Reflected Cross Site Scripting

Stored cross site scripting

The stored (or persistent) Cross Site Scripting occurs

when the data provided by the attacker is saved by the

server, and then displayed permanently on "normal"

pages returned to other users. Stored XSS requires

particular kind of vulnerability in the application

where the data is placed in somewhere (ex. Data base)

and later feedback is send to the user, this can be

through Forum, Blog, etc. The attacker can send

<HTML> or <JavaScript> to the application instead of

the normal input to be stored in the data base, later

http://www.ijesrt.com/

[Sharma, 4(1): January, 2015] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [633]

when the victim comes to the application web site

he/she will download the <HTML> or <JavaScript>

located there. The application here acts as an attack

site but works for the hacker.

Reflected Cross Site Scripting

Reflected (or non-persistent) Cross Site Scripting can

occur when the data provided by a web client, most

commonly in HTTP query parameters or in HTML

form submissions, is used immediately by server-side

scripts to generate a page of results and reflected back

for the user, without sanitizing the request. For

example, if we have a user Log-In prompt (User-Id,

Password) and the user has supplied his Log-In

information. Suppose the user typed his Password

incorrectly, he may have a message like ("Sorry,

Invalid Log-In"), but sometimes we have a message

like ("Sorry Ahmed, Invalid Log-In") and here's the

problem, where the (user name) sends and reflected

back to the output. If there is no input validation for

Log-In text boxes, the attacker can exploit this

vulnerability to inject his malicious input 'XSS' instead

of User-Id. The attacker can craft an email contains a

link request from the user to click on the link to update

personal data.

Hijack Session

The attacker needs the cookie form the victim to hijack

the session. This is can be implemented by creating

one form and make it submit to the attacker site.

Example:

</form><form name = 'a' action = 'attackersiteaddress'

method = 'post'>

<input type = hidden value = '<script> +

document.cookie +

</script>'>

</form>

<script>a.submit() </script>

Cookie Poisoning
The attacker can corrupt the value of the cookie if he

detect that an application is relying on the cookie value

to display specific action done by the user with

"response.write". Assume the application store the

value of the last search done by the user along with the

date-time in cookies.

Example:

The attacker here can update the value of the last

search with a herf pointing to his site as following:

<script>document.cookie.userlastsearch = '<A herf =

"attackersiteAddress"> You have won a random prize

please click here to continue '

</script>

IFrame:

The <iframe> tag specifies an inline frame. An inline

frame is used to embed another document within the

current HTML document. The attacker can simply

fool the user by showing the UI that has size 100% in

height and width to look the same as an application site

through writing the following malicious code:

<iframe SRC="attacker site" height = “100%” width

=“100%”>

From the previous examples, we reach to the main

reasons that make an application susceptible to Cross

Site Scripting attacks:

 There is no input validation control for the

inputs coming to an application.

 There is no sanitization control for the output

coming from the application.

Prepared statements and stored procedures

Many of the more mature databases support the

concept of prepared statements. What are they? They

can be thought of as a kind of compiled template for

the SQL that an application wants to run, that can be

customized using variable parameters. Prepared

statements offer two major benefits:

The query only needs to be parsed (or prepared) once,

but can be executed multiple times with the same or

different parameters. When the query is prepared, the

database will analyze, compile and optimize its plan

for executing the query. For complex queries this

process can take up enough time that it will noticeably

slow down an application if there is a need to repeat

the same query many times with different parameters.

By using a prepared statement the application avoids

repeating the analyze/compile/optimize cycle. This

means that prepared statements use fewer resources

and thus run faster.

The parameters to prepared statements don't need to be

quoted; the driver automatically handles this. If an

application exclusively uses prepared statements, the

developer can be sure that no SQL injection will occur

(however, if other portions of the query are being built

up with unescaped input, SQL injection is still

possible).

Prepared statements are so useful that they are the only

feature that PDO will emulate for drivers that don't

support them. This ensures that an application will be

http://www.ijesrt.com/

[Sharma, 4(1): January, 2015] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [634]

able to use the same data access paradigm.regardless

of the capabilities of the database.

SYSTEM MODEL

The web application dump files are scanned with the

scanning tool and provide a report with the classified

vulnerabilities. All the discovered leaks and

vulnerabilities by displaying the name of the infected

file, the description and its location. The suggested

algorithm will help organization to fix the

vulnerabilities and improve the overall security. This

report requires a reaction from the organization to take

the necessary corrections steps.

Figure:

System Architecture

CONCLUSION
Thus the scanning tool were used to verify a class of

security properties like vulnerabilities for web

applications. In particular, for the detection of SQL

injection, Cross Site Request Forgery, and Cross Site

Scripting. Based on the analysis of vulnerabilities fault

locations were identified, based on the impact of

vulnerabilities recovery mechanism where suggested

and also with the work on syntactic and semantic

checking of dynamically generated database queries

(SQL) XSRF, XSS were analyzed.

REFERENCES
1. Avizienis.A, Member, IEEE and Vytautas

Magnus Univ, Senior Member,

“IEEE,taxonomy of dependable and secure

computing”, 2011.

2. Le Gues, C.Michael Dewey-Vogt “A

Systematic Study of Automated Program

Repair: Fixing 55 out of 105 Bugs for $8

each”, International Conference on Software

Engineering, 2012.

3. Jovanovic, N., Kruegel, C., Kirda, E.,

“Precise Alias Analysis for Static Detection

of Web Application Vulnerabilities”, IEEE

Symposium on Security and Privacy, 2009.

4. ViktoriaFelmetsger, LudovicoCavedon

“Automatic Detection of Web Application

Security Flaws” 2011.

5. José Fonseca, NunoSeixas, Marco Vieira,

Henrique Madeira “Analysis of Field Data

on Web Security Vulnerabilities” 2013.

6. Fogie, S., Grossman, J., Hansen, R., Rager,

A., Pektov, P., “XSS Attacks: Cross Site

Scripting Exploits and Defense”, Syngress,

2007.

7. José Fonseca, NunoSeixas, Marco Vieira,

Henrique Madeira “Analysis of Field Data on

Web Security Vulnerabilities”IEEE

Transactions On Dependeble And Secure

Computing ,2013

Scanning

Tool

Fault

Detection

Process

Sql Injection

Cross site

scripting

Hijack Session

Cookie

Poisoning

Iframe

Input

Website

Fault

Recovery

Process

Report

Generate

http://www.ijesrt.com/

